Characterization of the negative elements involved in silencing the bgl operon of Escherichia coli: possible roles for DNA gyrase, H-NS, and CRP-cAMP in regulation.
نویسندگان
چکیده
The bgl operon of Escherichia coli is rendered cryptic and uninducible in wild-type cells by the presence of DNA structural elements that negatively regulate transcription. We have carried out a detailed analysis of the sequences implicated in negative regulation. Fine-structure deletion analysis of the upstream sequences showed the presence of at least two elements involved in silencing the promoter. Chemical probing of genomic DNA in vivo showed that a region of dyad symmetry, present upstream of the promoter, is hypersensitive to KMnO4. The hypersensitive region detected corresponds to the potential cruciform structure implicated earlier in negative regulation. Enhancement of transcription from the wild-type promoter, observed in the presence of the gyrase inhibitor novobiocin, was absent in a mutant that carried point mutations in the inverted repeat. This observation suggests that the activation seen in a gyrase mutant is mediated by destabilization of the cruciform because of reduced supercoiling. Deletion of sequences downstream of the potential cruciform also resulted in an increase in transcription, indicating the presence of a second regulatory element. Measurement of transcription from the bgl promoter carrying the deletion, in a strain that has a mutation in the hns gene, indicated that this region is likely to be involved in binding to H-NS or a protein regulated by H-NS, which acts as a non-specific repressor. We also provide evidence which suggests that transcriptional activation by mutations at the cAMP receptor protein (CRP)-binding site is mediated partly by antagonization of the negative effect of H-NS by CRP-cAMP as a result of its increased affinity for the mutant site.
منابع مشابه
Silencing of the Escherichia coli bgl promoter: effects of template supercoiling and cell extracts on promoter activity in vitro.
Regulation of the Escherichia coli bgl promoter involves the catabolite gene activator protein (CAP) and silencer elements that are located upstream and downstream of the promoter and its CAP binding site. The promoter is kept in a repressed state by the silencer elements and other normally active CAP-dependent or -independent promoters are repressed as well when flanked by these elements. To a...
متن کاملMechanism of catabolite repression in the bgl operon of Escherichia coli: involvement of the anti-terminator BglG, CRP-cAMP and EIIA in mediating glucose effect downstream of transcription initiation
Background: Expression of the bgl operon of Escherichia coli, involved in the regulated uptake and utilization of aromatic b-glucosides, is extremely sensitive to the presence of glucose in the growth medium. We have analysed the mechanism by which glucose exerts its inhibitory effect on bgl expression. Results: Our studies show that initiation of transcription from the bgl promoter is only mar...
متن کاملDifferential spectrum of mutations that activate the Escherichia coli bgl operon in an rpoS genetic background.
The bgl promoter is silent in wild-type Escherichia coli under standard laboratory conditions, and as a result, cells exhibit a beta-glucoside-negative (Bgl-) phenotype. Silencing is brought about by negative elements that flank the promoter and include DNA structural elements and sequences that interact with the nucleoid-associated protein H-NS. Mutations that confer a Bgl+ phenotype arise spo...
متن کاملStudy of Mutations in the DNA gyrase gyrA Gene of Escherichia coli
Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...
متن کاملStudy of Mutations in the DNA gyrase gyrA Gene of Escherichia coli
Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular microbiology
دوره 24 3 شماره
صفحات -
تاریخ انتشار 1997